Zero-Shot Fine-Grained Classification by Deep Feature Learning with Semantics
نویسندگان
چکیده
Fine-grained image classification, which aims to distinguish images with subtle distinctions, is a challenging task due to two main issues: lack of sufficient training data for every class and difficulty in learning discriminative features for representation. In this paper, to address the two issues, we propose a two-phase framework for recognizing images from unseen fine-grained classes, i.e. zero-shot fine-grained classification. In the first feature learning phase, we finetune deep convolutional neural networks using hierarchical semantic structure among fine-grained classes to extract discriminative deep visual features. Meanwhile, a domain adaptation structure is induced into deep convolutional neural networks to avoid domain shift from training data to test data. In the second label inference phase, a semantic directed graph is constructed over attributes of fine-grained classes. Based on this graph, we develop a label propagation algorithm to infer the labels of images in the unseen classes. Experimental results on two benchmark datasets demonstrate that our model outperforms the state-of-the-art zero-shot learning models. In addition, the features obtained by our feature learning model also yield significant gains when they are used by other zero-shot learning models, which shows the flexility of our model in zero-shot fine-grained classification.
منابع مشابه
Learning Deep Parsimonious Representations
In this paper we aim at facilitating generalization for deep networks while supporting interpretability of the learned representations. Towards this goal, we propose a clustering based regularization that encourages parsimonious representations. Our k-means style objective is easy to optimize and flexible, supporting various forms of clustering, such as sample clustering, spatial clustering, as...
متن کاملZero-Shot Learning with Structured Embeddings
Despite significant recent advances in image classification, fine-grained classification remains a challenge. In the present paper, we address the zero-shot and few-shot learning scenarios as obtaining labeled data is especially difficult for fine-grained classification tasks. First, we embed state-of-the-art image descriptors in a label embedding space using side information such as attributes...
متن کاملBird Species Categorization Using Pose Normalized Deep Convolutional Nets
We propose an architecture for fine-grained visual categorization that approaches expert human performance in the classification of bird species. Our architecture first computes an estimate of the object’s pose; this is used to compute local image features which are, in turn, used for classification. The features are computed by applying deep convolutional nets to image patches that are located...
متن کاملZero-Shot Learning and Clustering for Semantic Utterance Classification
We propose two novel zero-shot learning methods for semantic utterance classification (SUC) using deep learning. Both approaches rely on learning deep semantic embeddings from a large amount of Query Click Log data obtained from a search engine. Traditional semantic utterance classification systems require large amounts of labelled data, whereas our proposed methods make use of the structure of...
متن کاملZero-Shot Learning via Category-Specific Visual-Semantic Mapping
Zero-Shot Learning (ZSL) aims to classify a test instance from an unseen category based on the training instances from seen categories, in which the gap between seen categories and unseen categories is generally bridged via visual-semantic mapping between the low-level visual feature space and the intermediate semantic space. However, the visual-semantic mapping (i.e., projection) learnt based ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1707.00785 شماره
صفحات -
تاریخ انتشار 2017